BASiC基本?碳化硅肖特基二極管-傾佳電子專業(yè)分銷
編輯:Admin上傳時間:2023-12-12瀏覽:2093 次
適用于光伏逆變器升壓MPPT及充電樁輸出整流的BASiC基本™碳化硅肖特基二極管-傾佳電子專業(yè)分銷
適用于大功率PD電源,服務器電源,通信電源預計其他工業(yè)電源PFC應用的BASiC基本™碳化硅肖特基二極管-傾佳電子專業(yè)分銷
碳化硅作為一種寬禁帶半導體材料,與傳統的硅基器件相比,具有更優(yōu)越的性能。碳化硅的寬禁帶(3.26eV)、高臨界場(3×106V/cm)和高導熱系數(4.9W/cm·K)使得功率半導體器件效率更高,運行速度更快,并且在設備的成本、體積、重量等方面都得到了降低?;?trade;半導體碳化硅肖特基二極管,提供行業(yè)標準封裝,具有優(yōu)越的性能和極高的工作效率。
傾佳電子專業(yè)分銷的BASiC基本™碳化硅肖特基二極管主要產品有:
B3D05120E TO-252-2
B3D20120H TO-247-2
B3D40120HC TO-247-3
B2D60120H1 TO-247-2
B2DM100120N1 SOT-227
B1D02065E TO-252-2
B1D02065K TO-220-2
B2D04065E1 TO-252-2
B2D04065D1 DFN 5*6
B2D04065KF1 TO-220F-2
B2D04065V SMBF
B2D04065K1 TO-220-2
B2D06065E1 TO-252-3
B1D06065F TO-263-2
B2D06065K1 TO-220-2
B2D06065KF1 TO-220F-2
B1D06065KS TO-220-isolated
B2D06065Q DFN8*8
B1D08065E TO-252-2
B1D08065F TO-263-2
B2D08065K1 TO-220-2
B1D08065KF TO-220F-2
B1D08065KS TO-220-isolated
B2D08065KS TO-220-isolated
B2D10065E1 TO-252-3
B2D10065F1 TO-263-3
B1D10065H TO-247-2
B2D10065K1 TO-220-2
B2D10065KF1 TO-220F-2
B1D10065KS TO-220-isolated
B2D10065Q DFN8*8
B2D10065KS TO-220-isolated
B1D12065K TO-220-2
B1D15065K TO-220-2
B2D15065K TO-220-2
B2D16065HC1 TO-247-3
B2D20065H1 TO-247-2
B2D20065HC1 TO-247-3
B2D20065F1 TO-263-3
B2D20065K1 TO-220-2
B2D20065TF TO-3PF
B2D30065HC1 TO-247-3
B1D30065TF TO-3PF
B2D30065H1 TO-247-2
B2D40065H1 TO-247-2
B2D40065HC1 TO-247-3
B2D02120E1 TO-252-2
B2D02120K1 TO-220-2
B2D05120E1 TO-252-2
B2D05120K1 TO-220-2
B2D10120E1 TO-252-2
B2D10120H1 TO-247-2
B2D10120HC1 TO-247-3
B2D10120K1 TO-220-2
B2D15120H1 TO-247-2
B2D16120HC1 TO-247-3
B2D20120H1 TO-247-2
B2D20120H2 TO-247-2
B3D20120H TO-247-2
B2D20120F1 TO-263-2
B2D20120HC1 TO-247-3
B2D30120H1 TO-247-2
B2D30120HC1 TO-247-3
B3D30120HC TO-247-3
B2D40120H1 TO-247-2
B2D40120HC1 TO-247-3
B3D40120HC TO-247-3
BASiC基本™第二代SiC碳化硅MOSFET兩大主要特色:
1.出類拔萃的可靠性:相對競品較為充足的設計余量來確保大規(guī)模制造時的器件可靠性。
BASiC基本™第二代SiC碳化硅MOSFET 1200V系列擊穿電壓BV值實測在1700V左右,高于市面主流競品,擊穿電壓BV設計余量可以抵御碳化硅襯底外延材料及晶圓流片制程的擺動,能夠確保大批量制造時的器件可靠性,這是BASiC基本™第二代SiC碳化硅MOSFET更關鍵的品質.
2.可圈可點的器件性能:同規(guī)格較小的Crss帶來出色的開關性能。
BASiC基本™第二代SiC碳化硅MOSFET反向傳輸電容Crss 在市面主流競品中是比較小的,帶來關斷損耗Eoff也是市面主流產品中非常出色的,優(yōu)于部分海外競品,特別適用于LLC應用.
Ciss:輸入電容(Ciss=Cgd+Cgs) ⇒柵極-漏極和柵極-源極電容之和:它影響延遲時間;Ciss越大,延遲時間越長。BASiC基本™第二代SiC碳化硅MOSFET 優(yōu)于主流競品。
Crss:反向傳輸電容(Crss=Cgd) ⇒柵極-漏極電容:Crss越小,漏極電流上升特性越好,這有利于MOSFET的損耗,在開關過程中對切換時間起決定作用,高速驅動需要低Crss。
Coss:輸出電容(Coss=Cgd+Cds)⇒柵極-漏極和漏極-源極電容之和:它影響關斷特性和輕載時的損耗。如果Coss較大,關斷dv/dt減小,這有利于噪聲。但輕載時的損耗增加。
傾佳電子專業(yè)分銷碳化硅MOSFET專用雙通道隔離驅動IC-BTD25350,原方帶死區(qū)時間設置,副方帶米勒鉗位功能:
BTD25350適用于以下碳化硅功率器件應用場景:
充電樁電源模塊后級LLC用SiC MOSFET 方案
光伏儲能高壓電池BUCK-BOOST中SiC MOSFET方案
高頻APF,用兩電平的三相全橋SiC MOSFET方案
空調壓縮機三相全橋SiC MOSFET方案
OBC后級LLC中的SIC MOSFET方案
服務器交流側圖騰柱PFC高頻臂GaN或者SiC方案
基本™B2M第二代碳化硅MOSFET器件主要特色:
• 比導通電阻降低40%左右
• Qg降低了60%左右
• 開關損耗降低了約30%
• 降低Coss參數,更適合軟開關
• 降低Crss,及提高Ciss/Crss比值,降低器件在串擾行為下誤導通風險
• 更大工作結溫175℃• HTRB、 HTGB+、 HTGB-可靠性按結溫Tj=175℃通過測試
• 優(yōu)化柵氧工藝,提高可靠性
• 高可靠性鈍化工藝
• 優(yōu)化終端環(huán)設計,降低高溫漏電流
• AEC-Q101
碳化硅 (SiC) MOSFET出色的材料特性使得能夠設計快速開關單極型器件,替代升級雙極型 IGBT (絕緣柵雙極晶體管)開關。碳化硅 (SiC) MOSFET替代IGBT可以得到更高的效率、更高的開關頻率、更少的散熱和節(jié)省空間——這些好處反過來也降低了總體系統成本。SiC-MOSFET的Vd-Id特性的導通電阻特性呈線性變化,在低電流時SiC-MOSFET比IGBT具有優(yōu)勢。
與IGBT相比,SiC-MOSFET的開關損耗可以大幅降低。采用硅 IGBT 的電力電子裝置有時不得不使用三電平拓撲來優(yōu)化效率。當改用碳化硅 (SiC) MOSFET時,可以使用簡單的兩級拓撲。因此所需的功率元件數量實際上減少了一半。這不僅可以降低成本,還可以減少可能發(fā)生故障的組件數量。SiC MOSFET 不斷改進,并越來越多地加速替代以 Si IGBT 為主的應用。 SiC MOSFET 幾乎可用于目前使用 Si IGBT 的任何需要更高效率和更高工作頻率的應用。這些應用范圍廣泛,從太陽能和風能逆變器和電機驅動到感應加熱系統和高壓 DC/DC 轉換器。
隨著自動化制造、電動汽車、先進建筑系統和智能電器等行業(yè)的發(fā)展,對增強這些機電設備的控制、效率和功能的需求也在增長。碳化硅 MOSFET (SiC MOSFET) 的突破重新定義了歷史上使用硅 IGBT (Si IGBT) 進行功率逆變的電動機的功能。這項創(chuàng)新擴展了幾乎每個行業(yè)的電機驅動應用的能力。Si IGBT 因其高電流處理能力、快速開關速度和低成本而歷來用于直流至交流電機驅動應用。更重要的是,Si IGBT 具有高額定電壓、低電壓降、低電導損耗和熱阻抗,使其成為制造系統等高功率電機驅動應用的明顯選擇。然而,Si IGBT 的一個顯著缺點是它們非常容易受到熱失控的影響。當器件溫度不受控制地升高時,就會發(fā)生熱失控,導致器件發(fā)生故障并更終失效。在高電流、電壓和工作條件常見的電機驅動應用中,例如電動汽車或制造業(yè),熱失控可能是一個重大的設計風險。
電力電子轉換器提高開關頻率一直是研發(fā)索所追求的方向,因為相關組件(特別是磁性元件)可以更小,從而產生小型化優(yōu)勢并節(jié)省成本。然而,所有器件的開關損耗都與頻率成正比。IGBT 由于“拖尾電流”以及較高的門極電容的充電/放電造成的功率損耗,IGBT 很少在 20KHz 以上運行。SiC MOSFET在更快的開關速度和更低的功率損耗方面提供了巨大的優(yōu)勢。IGBT 經過多年的高度改進,使得實現性能顯著改進變得越來越具有挑戰(zhàn)性。例如,很難降低總體功率損耗,因為在傳統的 IGBT 設計中,降低傳導損耗通常會導致開關損耗增加。
作為應對這一設計挑戰(zhàn)的解決方案,SiC MOSFET 具有更強的抗熱失控能力。碳化硅 的導熱性更好,可以實現更好的設備級散熱和穩(wěn)定的工作溫度。SiC MOSFET 更適合較溫暖的環(huán)境條件空間,例如汽車和工業(yè)應用。此外,鑒于其導熱性,SiC MOSFET 可以消除對額外冷卻系統的需求,從而有可能減小總體系統尺寸并降低系統成本。
由于 SiC MOSFET 的工作開關頻率比 Si IGBT 高得多,因此它們非常適合需要精確電機控制的應用。高開關頻率在自動化制造中至關重要,高精度伺服電機用于工具臂控制、精密焊接和精確物體放置。此外,與 Si IGBT 電機驅動器系統相比,SiC MOSFET 的一個顯著優(yōu)勢是它們能夠嵌入電機組件中,電機控制器和逆變器嵌入與電機相同的外殼內。使用SiC MOSFET 作為變頻器或者伺服驅動功率開關器件的另一個優(yōu)點是,由于 MOSFET 的線性損耗與負載電流的關系,它可以在所有功率級別保持效率曲線“平坦”。SiC MOSFET變頻伺服驅動器的柵極電阻的選擇是為了首先避免使用外部輸出濾波器,以保護電機免受高 dv/dt 的影響(只有電機電纜長度才會衰減 dv/dt)。 SiC MOSFET變頻伺服驅動器相較于IGBT變頻伺服驅動器在高開關頻率下的巨大效率優(yōu)越性.
盡管 SiC MOSFET 本身成本較高,但某些應用可能會看到整個電機驅動器系統的價格下降(通過減少布線、無源元件、熱管理等),并且與 Si IGBT 系統相比總體上可能更便宜。這種成本節(jié)省可能需要在兩個應用系統之間進行復雜的設計和成本研究分析,但可能會提高效率并節(jié)省成本?;?SiC 的逆變器使電壓高達 800 V 的電氣系統能夠顯著延長電動汽車續(xù)航里程并將充電時間縮短一半。
碳化硅 (SiC) MOSFET功率半導體技術代表了電力電子領域的根本性變革。SiC MOSFET 的價格比 Si MOSFET 或 Si IGBT 貴。然而,在評估碳化硅 (SiC) MOSFET提供的整體電力電子系統價值時,需要考慮整個電力電子系統和節(jié)能潛力。需要仔細考慮以下電力電子系統節(jié)省: 第一降低無源元件成本,無源功率元件的成本在總體BOM成本中占主導地位。提高開關頻率提供了一種減小這些器件的尺寸和成本的方法。 第二降低散熱要求,使用碳化硅 (SiC) MOSFET可顯著降低散熱器溫度高達 50%,從而縮小散熱器尺寸和/或消除風扇,從而降低設備生命周期內的能源成本。 通常的誘惑是在計算價值主張時僅考慮系統的組件和制造成本。在考慮碳化硅 (SiC) MOSFET的在電力電子系統里的價值時,考慮節(jié)能非常重要。在電力電子設備的整個生命周期內節(jié)省能源成本是碳化硅 (SiC) MOSFET價值主張的一個重要部分。